Real-Time Neural Network Processing of

Gestural and Acoustic Signals
Michael Lee, Adrian Freed, David Wessel

Center for New Music and Audio
Technologies (CNMAT)
University of California
1750 Arch Street, Berkeley, CA 94709
lee, adrian, wessek@cnmat.berkeley.edu

Abstract

We have added a new object to the MAX language
to perform neural computations. By placing the
neural processing in the context of a flexible real-
time musical programming environment, we can
conduct experiments rapidly on the application of
the adaptive techniques to musical problems. We
have trained the networks to recognize gestures
from a MIDI keyboard, a Zeta™ MIDI guitar, radio
drum, and Lightning™. In one experiment, a
network successfully recognized musical motifs
played on a MIDI guitar and issued messages to
synchronize the presentation of images from a
HyperMedia work. This "page turner” generalized
important features of the motifs from 9 training
sets. We have also trained a neural network to
recognize gestural contours from the continuous
spatial controllers, suggesting their application in
the interpretation of conducting gestures. We
discuss the low-level features extracted for the
networks to operate on, how we trained the
networks and musical applications of adaptive
techniques.

Introduction

MAX, a real-time musical programming
environment, was developed at IRCAM by Miller
Puckette [PuZi90]. Users can assemble MAX
programs by graphically patching together code or
objects. The MAX environment allows users to
extend the language by integrating external code
resources, or objects, into the system much like
HyperCard XCMDs [Zica%90]. This combination
of attributes makes MAX a flexible environment
well suited for prototyping of real-time systems.

We have added a new object to MAX, MAXNet,
which performs neural network computations.
MAXNet can simulate multi-layered feed forward
and Jordan [Jord86] and Elman [Elma88] style
recurrent networks. By placing the neural
processing in a flexible real-time musical
programming environment, we can conduct

experiments rapidly on the application of the
adaptive techniques to musical problems.

Neural Networks

Neural networks are computational systems
modelled after the architecture of the brain
[RuMc86]. The brain is composed of an array of
interconnected processing elements, or neurons. In
a neural network, each neuron is a simple element
that feeds the weighted sum of its inputs into a
‘squashing’ function such as a sigmoid. The value
of a weight represents the connection strength
between two neurons. For example, wj; represents

the connection strength from neuron i to neuron j.

f(net;) = 1/(1+¢nel;*slopeFactor;) (1)
where net; = 3 w;;0; @

Neural networks can perform attribute estimation,
or function approximation, as well as
classification. Researchers have proven that 3
layer neural networks can approximate any
arbitrary mapping [HoSW89]. Attribute
estimation is important because in many control
applications, attribute values can be equally as
important as class membership. For example, in
the popular cart and pole balancing control
problem [MiSW90], the neural network is required
to produce control values for the cart and not a
classification. (Classification can be thought of
as a degenerate case of estimation [Pao89].)

Training a neural network amounts to searching for
a set of weights that will give the neural network
the desired input/output behavior. The most
popular technique for training multi-layered feed
forward neural networks is back—propagation
gradient descent [RuMc86]. Back—propagation is
an example of supervised training: the network is
repeatedly shown both the input and its associated
output pattern. After each presentation, the neural
network tries to adapt its interconnection weights
according to some cost function (this is sometimes
referred to as on-line learning. One pass through
all training examples is called an epoch). The
process continues until some error criterion is
satisfied.

MAXNet

MAXNet is a neural network simulator that can
simulate multi-layered feed forward and Jordan and
Elman style recurrent networks. The user can
specify several architectural parameters: number of
input and output neurons, number of neurons per

ICMC

271

hidden layer, number of hidden layers, slope
factors. Each layer is fully interconnected to
adjacent layers, however "unconnected” links can
be represented by weights of value 0.

Jordan and Elman recurrent networks are similar to
strictly feed forward neural networks. Both style
recurrent nets have context neurons that get their
input from either a hidden (Elman) or output
(Jordan) neuron. The extra context units are like
input units, which get their inputs from other
neurons instead of an external stimulus. This can
be achieved by configuring a network with the
number of input neurons equal to the number of
external stimuli sources plus the number of output
or hidden neurons (depending on recurrent style).
The modified input patterns will be a vector
consisting of the normal stimulus vector prepended
to a vector describing the feedback paths. (See
[Todd89] for musical applications of recurrent
neural networks.) Another external control adjusts
the amount of feedback from a context neuron to
itself (this gives the neuron some memory).

The slope parameter also can be set for all output
layer units. Setting the parameter less than 1 will
decrease the slope of the sigmoid and make the
function behave like a linear unit. Higher slope
values seem to speed convergence of neural
networks applied to problems with binary valued
outputs.

Figure 1. MAXNet Graphic Display

There is a companion program, MACNet, which
runs on Macintosh and UNIX machines to
facilitate training. Both code objects have identical
capabilities and read and write the same format text
files. The most efficient way to use MAXNet is
to setup a data acquisition harness in MAX and
collect the data into a training file. Then use
MACNet to learn the input/output mapping and
save the weights file. Finally, attach MAXNet to
the acquisition harness, read in the weights, and
then compute. Both simulators use compatible
text files, which eases examining and editing
weights.

MAXNet also can graphically display the state of
the network in real-time. This feature can be
turned on or off by the user. MAXNet uses color
to represent the weight values and the size of the
hole in the middle of a neuron to represent its
activation level (see Figure 1). Connecting MAX
user interface objects, such as sliders, to MAXNet
gives you the ability to explore how the activation
levels of input neurons affect the neurons in other
layers.

Training the Networks

MAXNet uses several user adjustable parameters
during a training session. The first two are
learning rate and momentum, which are used for
adapting the weights of the network. MAXNet
also can learn the slope factor for individual output
units. This requires that the user set a slope
learning rate and slope momentum in addition to
the weight adjustment parameters (note that a slope
learning rate of 0 is conventional back-
propagation). The generalized update equations for
weights and slope factors is shown in (3) and (4).

Ax,,1 = leamingRate * —9Cost/ox +
momentum*Ax, (3)
Xn+l = Xp + Axpyq (4)

MAXNet also can optionally add hidden units
according to some error criteria. This means that
the number of hidden units does not need to be
determined apriori. A new node can be added if, for
example the error has not decreased more than
some percentage over the last n epochs [HiYH91].
The parameters the user can set are maximum
number of hidden units (to terminate learning),
percentage of error decrease, and number of epochs
to train before applying grow criteria.

Real-Time Processing Requirements

Training MAXNet is computationally intensive,
but once the weights have been found, running
MAXNet feed forward requires less computing
resources. There is a multiply/add for each weight
and a function evaluation for each hidden and
output neuron. For large nets, the number of
connections exceeds the number of neurons so we
can assume that most of the time will be spent
computing weighted sums. On a 16MHz 68020
without a math coprocessor, we can achieve at
least 200K connections/Sec. This translates to one
forward pass through a three layer net with 10
neurons on each layer in 1 mSec. We are porting
the MAXNet to a separate 68020 processor card,

ICMC

278

the GreenSprings 1260, to reduce the processing
requirements of the host 68020 and guarantee real—
time.

Applications

We have trained the neural networks to recognize
gestures from a MIDI keyboard, a Zeta™ MIDI
guitar, radio drum, and Lightning™. We have also
trained a neural network to recognize gestural
contours from the continuous spatial controllers,
suggesting their application in the interpretation of
conducting gestures. With the recurrent
capabilities of MAXNet, algorithmic composition
in the manner of Todd [Todd89] is also possible.

MIDI Keyboard

MAXNet can construct complex multidimensional
maps. One application is to dynamically control
the timbre using a combination of key number,
velocity and another MIDI controller signal to
control the mix of a bank of tone generators. With
a neural network, complex regions can be carved
out of the key, velocity, controller space to
represent certain timbres.

This type of control also can be achieved by using
multidimensional tables or functions. However,
neural networks have the advantage over tables that
they can interpolate points and generalize; i.e., the
whole table does not need to be filled out.
Multivariable functions could be computationally
more efficient than neural networks, but it is much
easier to find an approximating function by
training a neural network. Training a neural
network to approximate multivariable functions
automates the search and is ultimately less time
consuming for the human.

Radio Drum

The radio drum problem represents a coordinate
transformation application of a neural network,
The drum, developed at Bell Labs by Mathews and
Boie [MaSc89], has two sticks, each of which has
a transmitter attached to the end, and a surface with
an array of antennas. Each transmitter operates at a
different frequency and the antennas report the
intensity of the transmitter signal. The response
of the stick antenna combination is highly
nonlinear. In addition, when the two sticks are
close together, a proximity effect decreases the
antenna readings.

The initial goal was to feed the antenna readings
directly into the neural network and transform them
into 3D spatial coordinates compensating for the

proximity effects along the way. Once the neural
network was trained, the resulting system behaved
more linearly because the neural network removed
the nonlinearities.

With the neural network, the 3D coordinate
transformation could be bypassed and the antenna
space could be directly translated into the gesture
space. This would eliminate the need for further
computations that take the gesture from 3D space
into gesture space, thus possibly reducing errors.

MIDI Guitar

In another experiment, a neural network
successfully recognized musical motifs played on a
MIDI guitar and issued messages to synchronize
the presentation of images from a HyperMedia
work. The guitar provided MIDI data, which was
analyzed and provided the tonal center, note
density, note variance, duration measure, and
melodic contour for each string. The riffs were
segmented heuristically by setting a time threshold
between events. The neural network was trained
and learned to generalize these feature vectors from
9 different motifs.The resulting net had 37 input
units (one extra set for global features), 6 hidden
units, and 9 output units.

EZN

Figure 3. Shapes Recognized by MAXNet
Lightning™

Lightning™, a new controller developed by Don
Buchla, has two infrared transmitters and a receiver
box, which provides spatial coordinates of the
transmitters. We have interfaced Lightning™ to a
neural network to recognize conducting gestures
(see Figure 3). Each gesture was analyzed with a
technique developed by You and Fu for curve
attributes and syntactic pattern recognition
[YoFu82] and provided a curvature, symmetry, and
endpoint distance measure. These features were
normalized and then presented to the neural
network. After training, the neural network could
classify unseen gestures according to the training
sets.

Discussion

Neural networks seem well suited to musical
applications due to their adaptive nature. We can
now develop experimental instruments that learn

ICMC

279

the musician’s personal mapping between gesture
and response. This adaptive approach to
instrumental control could be applied to more
traditional instrument controllers as well. For
example, a guitar controller could be self-
adjusting to a particular playing style. A training
set consisting of specified scales and chords could
be described in the instruction manual and once the
musician performed these examples the instrument
would adapt itself automatically. Other
applications might be to use them to compensate
for physical disabilities or to create more
ergonomic instruments.

An intriguing question arises around the notion of
adaptive instruments. How will we rig the
training hamesses so as to best exploit the very
adaptive nature of the human performer and an
instrument that learns?

Further Research

In gesture recognition for music applications such
as conducting or instrument control, segmentation,
time warping, and other timing issues, will play
critical roles. The continuous nature of these
applications demand that a complete time
representation be formulated.

Time-Delay Neural Net (TDNN) architectures in
speech and handwriting recognition applications
[GHAL91] [WHHS89] address some timing issues
and offer possible solutions. Several researchers
[ToPe89] have also reported success with sequence
recognition using self-organizing neural networks.
Both techniques need to be further investigated.

This work was supported in part by grant INV
9004-011 from Apple Computer Inc.

References

[Elma88] Elman, J.L., "Finding Structure in
Time." Technical Report 8801: La Jolla:
University of California at San Diego, Center
for Research in Language.

[GHAL91] Guyon, 1., Henderson, D., Albrecht,
P., Le Cun, Y., Denker, J., "Writer
Independent and Writer Adaptive Neural
Network for On-line Character Recognition."
To appear in IWFHR-2, 1991.

[HiYH91] Hirose, Y., Yamashita, K., Hijiya,
S., "Back Propagation Algorithm Which
Varies the Number of Hidden Units." Neural
Networks, Vol. 4, 1991.

[HoSW89] Hornik, K., Stinchcombe, M.,
White, H., "Multilayer Feedforward Networks
are Universal Approximators." Neural
Networks, Vol. 4, 1989.

[Pord86] Jordan, M.I. "Serial Order: A Parallel
Distributed Processing Approach.” Technical
Report ICS—8604. La Jolla: University of
California at San Diego, Institute for
Cognitive Science, 1986.

[MaSc89] Mathews, M., Schloss, A., “The
Radio Drum as a Synthesizer Controller,”
Proceedings of the ICMC, 1989.

[MiSW90] Miller, W.T., Sutton, R.S., Werbos,
PJ., eds., Neural Networks for Control, MIT
Press, Cambridge, MA, 1990.

[Pao89] Pao, Y.H. Adaptive Pattern
Recognition and Neural Networks, Addison—
Wesley, Reading, MA, 1989.

[Puzi90] Puckette, M., Zicarelli, D., MAX -
An Interactive Graphic Programming
Environment, Opcode Systems, Menlo Park,
CA, 1990.

[RuMc86] Rumelhart, D.E., McClelland, J.L.
Parallel Distributed Processing: Explorations
in the Microstructure of Cognition, Vols. 1
and 2, MIT Press, Cambridge, MA, 1986.

[Todd89] Todd, P., "A Connectionist Approach
to Algorithmic Composition,” Computer
Music Journal, Vol. 13, no. 4, 1989.

[ToPe89] Tolat, V.V., Peterson, A M., "A Self
Organizing Neural Network for Classifying
Sequences.” Proceedings of the 2nd JCNN,
Vol. 2, 1989.

[WHHS89] Waibel, A., Hanazawa, T.
Hinton, G., Shikano, K., and Lang,
K.J."Phoneme Recognition Using Time-
Delay Neural Networks,” IEEE Transactions
on Acoustics, Speech, and Signal Procesing,
37:328-339, March 1989.

[YoFu79] You, K.C., Fu, K.S., "A Syntactic
Approach to Shape Recognition Using
Attributed Grammars,” IEEE Transactions on
Systems, Man, and Cybemnetics, Vol. SMC-
9, No. 6, 1979.

[Zica90] Zicarelli, D. "Writing External
Objects for MAX," Opcode Systems, Menlo
Park, CA, 1990.

ICMC

280

