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ABSTRACT

We describe a system to learn and visualize specifications
from song(s) in symbolic and audio formats. The core of
our approach is based on a software engineering proce-
dure called specification mining. Our procedure extracts
patterns from feature vectors and uses them to build pat-
tern graphs. The feature vectors are created by segment-
ing song(s) and extracting time and and frequency domain
features from them, such as chromagrams, chord degree
and interval classification. The pattern graphs built on
these feature vectors provide the likelihood of a pattern be-
tween nodes, as well as start and ending nodes. The pat-
tern graphs learned from a song(s) describe formal spec-
ifications that can be used for human interpretable quan-
titatively and qualitatively song comparison or to perform
supervisory control in machine improvisation. We offer re-
sults in song summarization, song and style validation and
machine improvisation with formal specifications.

1. INTRODUCTION AND RELATED WORK

In software engineering literature, specification mining is
an efficient procedure to automatically infer, from empir-
ical data, general rules that describe the interactions of a
program with an application programming interface (API)
or abstract datatype (ADT) [3]. It has convenient proper-
ties that facilitate and optimize the process of developing
formal specifications. Specification mining is a procedure
that is either entirely automatic, or only requires the rel-
atively simple task of creating templates. It offers valu-
able information on commonalities in large datasets and
exploits latent properties that are unknown to the user but
reflected in the data. Techniques to automatically gener-
ate specifications date back to the early seventies, includ-
ing [5, 24]. More recent research on specification mining
includes [2,3,10,17]. In general, specification mining tools
mine temporal properties in the form of mathematical logic
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or automata. Figure 1 describes a simple musical specifica-
tion. Broadly speaking, the two main strategies for build-
ing these automata include: 1) learning a single automa-
ton and inferring specifications from it; 2) learning small
templates and designing a complex automaton from them.
For example, [3] learns a single probabilistic finite state
automaton from a trace and then extracts likely properties
from it. The other strategy circumvents the NP-hard chal-
lenge of directly learning a single automaton [14, 15] by
first learning small specifications and then post-processing
them to build more complex state machines. The idea of
mining simple alternating patterns was introduced by [10],
and subsequent efforts include [12, 13, 25, 26].

Figure 1: This graph describes three specifications: 1) a
sequence must start (unlabelled incoming arrow) with a
note of any type; 2) every note that does not belong to the
underlying chord (dissonant) must be followed by a note
that belongs to that chord (consonant); 3) a consonant note
must be followed by a dissonant note or another consonant
note; F means followed.

Manually describing such general rules from music is
a complex problem, even for experts, due to music’s pa-
rameter space complexity and richness of interpretation.
Specification mining is a very attractive solution because it
offers a systematic and automatic mechanism for learning
these specifications from large amounts of data. Similar
to specification mining strategies, algorithms for pattern
discovery in music such as [6, 20, 21] combine segmen-
tation and exhaustive search to find patterns that will be
condensed to create a statisticailly significant description
of the song(s). Our method avoids the exhaustive search
by searching for specific patterns and creates a complex
pattern graph by combining the patterns found, combin-
ing pattern graphs, and recursively building pattern graphs
learned from pattern graphs. The pattern graph allows the
representation of edges and nodes as mathematical objects,
e.g. multidimensional point sents or Gaussian Mixture
Models (GMM), hence it is not limited to strings.
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2. SPECIFICATIONS AND PATTERN GRAPH

This paper adapts the work of [17] to formally describe
specification mining in music. It expands our previous ef-
forts in [9] by developing an inference engine that uses
pre-defined templates to mine from a collection of traces
(songs) specifications in the form of pattern graphs.

2.1 Formal Definition

Let F be a list of features extracted from a song S, e.g.
pitch, duration, chroma, etc. The notation vf,t indicates
the value of f ∈ F at time t.

Definition 1 (Event) Formally, we define an event with
the tuple (~f,~v, t), where ~f is a set of features and ~v is their
corresponding values at time t. The alphabet Σf is the set
of distinct events given feature f , and a finite trace τ is a
sequence of events ordered by their time of occurrence.

Definition 2 (Projection) The projection π of a trace τ
onto an alphabet Σ, πΣ(τ), is defined as τ with all events
not in Σ deleted.

Definition 3 (Specification Pattern) A specification pat-
tern is a finite state automata, FSA, over symbols Σ. Pat-
terns can be parametrized by the events used in this alpha-
bet; for example, we use “the A pattern between events a
and b” to indicate the pattern obtained by taking a FSA A
with |Σ| = 2 and using a as the first element of Σ and b
as the second. A pattern is satisfied over a trace τ with
alphabet Στ ⊇ Σ iff πΣ(τ) ∈ L(A), that is, if and only
if the projection of the trace onto the alphabet Σ is in the
language of A.

Definition 4 (Binary Pattern) A binary pattern is a spec-
ification pattern with alphabet size 2. We denote a binary
pattern between events a and b as a R b, where R is a label
identifying the pattern. 1

Definition 5 (Pattern Graph) A pattern graph is a la-
belled directed multigraph whose nodes are elements of
Σf , i.e. values of a feature f . A node can be labelled
as a starting node, an ending node, or neither. Edges are
labelled with a type of binary pattern and a count indi-
cating how many times the pattern occurred in the dataset
used to build the pattern graph.

For example, an edge (a, b) labelled (R, 3) in the pattern
graph means the pattern a R b occurred 3 times in the
dataset. Figure 3 provides a complete example of a pat-
tern graph learned from the example in Figure 2. We have
indicated starting nodes with an unlabelled incoming ar-
row and ending nodes with a double circle (by analogy to
the standard notation for FSAs). 2

1 Although we explored binary patterns in this paper, our method sup-
ports patterns with more than two events.

2 A pattern graph can be converted into an automaton, but is not itself
an automaton.

Figure 2: First phrase of Crossroads Blues by Robert
Johnson as transcribed in the Real Book of Blues. The
transition from chord degree 10 (note f) to chord degree 7
(note d) is always preceded by two or several occurrences
of chord degree 10. Not merging 10 F 7 with 10 F 7 repre-
sents a musical inconsistency and the pattern graph would
accept words such as (10, 7, 10, 7).

Figure 3: Pattern graph learned on the chord degree fea-
ture (interval from root) extracted from the phrase in Fig. 2.
The F pattern between chord degrees 10 and 7 has been
merged into the pattern 10 T 7.

2.2 Patterns

We generate specifications by mining small patterns from
a set of traces and combining the mined patterns into a pat-
tern graph. The patterns in this paper as described as reg-
ular expressions, re, and were chosen based on idiomatic
music patterns such as repetition and ornamentation. Other
patterns can be mined by simply writing their re.

Followed(F): This pattern occurs when event a is im-
mediately followed by event b. It provides information
about immediate transitions between events, e. g. reso-
lution of non-chord tones. We denote the followed pattern
as a F b and describe it with the re (ab).

‘Til(T): This pattern occurs when event a appears two
or more times in sequence and is immediately followed by
event b. It provides information about what transitions are
possible after self-transitions are taken. We denote the ‘til
pattern as a T b and describe it with the re (aaa∗b).

Surrounding(S): This pattern occurs when event a im-
mediately precedes and succeeds event b. It provides in-
formation over a time-window of three events and we mu-
sically describe it as an ornamented self-transition. We de-
note the surrounding pattern as a S b and describe it with
the re (aba).

2.3 Pattern Merging

If every match to a pattern P2 = a R b occurs inside a
match to a pattern P1 = a Q b, we say that P1 subsumes
P2 and write P1 =⇒ P2. When this happens, we only
add the stronger pattern P1 to the pattern graph, with the
purpose of emphasizing longer musical structures. Given
the patterns described in this paper:

1. a T b =⇒ a F a, a F a is merged into a T b

2. a T b =⇒ a F b, a F b is merged into a T b

3. a S b =⇒ a F b, a F b is merged into a S b

4. a S b =⇒ b F a, b F a is merged into a S b
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Shorter patterns not included will be added iff they occur
outside the scope of longer patterns. Nonetheless, the pat-
tern graph is designed such that it accepts traces that satisfy
the longer pattern, e.g. a T b accepts the sequences aab and
aaab, but not ab or aac.

3. LEARNING AND ENFORCING
SPECIFICATIONS

3.1 Learning Specifications

Given a song dataset and their respective features, we build
pattern graphs Gf ∈ G by mining the patterns described
in 2. The patterns in G correspond to the set of allowed
patterns, while all others are forbidden.

The synchronous product of Gf can be used to build a
specification graph Gs that can be used to supervise the
output of a machine improviser. This concept originates
from the Control Improvisation framework, which we first
introduced in [8, 9] and have used in IoT applications [1].
We refer the reader to [11] for a thorough explanation.

Algorithm 1 describes the specification mining algo-
rithm. D is a dataset, e.g. Table 1, containing time and fre-
quency domain features, described in section 4, extracted
from songs with or without phrase boundary annotations;
P is a list containing string representations of the regu-
lar expressions that are used to mine patterns. The pattern
graph implementation and the code used to generated this
paper can be found on our github repository 3

Algorithm 1: Specification Mining Algorithm
Input: dataset D over features F ; patterns P
Output: a pattern graph Gf for each f ∈ F

1 for f ∈ F do
2 Gf ← new pattern graph on vertices Σf
3 for song ∈ D do
4 for phrase ∈ song do
5 phrasef ← the sequence of values of the

feature f in phrase
6 label the first element of phrasef as a

starting node in Gf
7 label the last element of phrasef as an

ending node in Gf
8 for a, b ∈ Σf do
9 counts←

countPatternMatches(a, b, phrasef ,P)

10 foreach pattern P with
counts(P ) > 0 do

11 add to Gf the edge (a, b) with
label (P, counts(P ))

In the next section we describe some of the features, or
viewpoints, that we used in this paper to build specifica-
tions that describe relevant musical properties of a song(s).

3 https://github.com/rafaelvalle/music_pattern_
graphs

4. MUSIC SPECIFICATION MINING

We abstract and formalize a song into a sequence of feature
values possibly aligned with a chord progression, phrase-
segmented and including key signature changes. In this
paper, the time unit is the beat, including respective integer
subdivisions. To encode all events in a score, we use an
alphabet which is the product of five alphabets: Σ = Σp ×
Σd × Σa × Σb × Σ12, where
• Σp is the pitches alphabet, i.e. Σp = { > , a0, a#0, · · · };
• Σd is the durations alphabet, i.e. Σd = {�, ♩, ˘ “, . . .}

with ♩ = 1 beat. Note that Σd also includes positive
integer subdivisions of the beat, e.g. for tuplets.

• Σc is the chords alphabet, i.e. Σc = {C, D7#4, . . .};
• Σb is the beat alphabet. For example, if the

smallest duration (excluding fractional durations) is
the eighth and the meter is in 4, then Σb is
{0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5}.

• Σ12 is the binary chroma alphabet. For this, we interpret
the binary chroma as a binary number and encode it with
the respective Unicode string.
Note that the full alphabet enables the creation of data

abstractions, e.g. chord degree. Below we describe the
data abstractions implemented using the alphabet above.
A similar strategy is used in [6,7], where data abstractions
(derived types, viewpoints) are implemented. In our cur-
rent implementation, all the specifications implicitly use
the full alphabet Σ via the product of pattern graphs.

4.1 Time Domain Features

• Event Duration: This feature describes the dura-
tion in beats of silences and notes. It imposes hard
constraints on duration diversity but provides weak
guarantees on rhythmic complexity because it has
no awareness of beat location. Figure 4 provides
one example of such weak guarantees. Further con-
straints can be imposed by combining event duration
and beat onset location.

Figure 4: Selection of event duration specifications
learned from a blues songs dataset. The pattern 1/3 S 1
(1/3, 1, 1/3) is allowed but can produce incomplete tuplets.

• Beat onset location: This feature describes where
events happen within the beat. Cooperatively,
event duration and beat onset location produce com-
plex specifications that allow for rhythmic diver-
sity. These specifications extend the work in [9] by
replacing handmade specifications designed to en-
sure rhythmic tuplet completeness with specifica-
tions learned from data. Figure 5 provides an ex-
ample of such specifications learned from 4/4 songs.
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Figure 5: Beat onset location specifications learned from
a blues songs dataset.

4.2 Frequency Domain Features

• Scale Degree: The scale degree is the identifica-
tion of a note disregarding its octave but regarding
its distance from a reference tonality. Songs usually
impose soft constraints on the pitch space, defining
the set of appropriate scale degrees and transitions
thereof. Figure 6 provides a selection of scale de-
gree mined specifications. Since scale degree can
only provide overall harmonic constraints to each
tone over the scope of the entire song, we use an-
other feature to provide harmonic constraints based
on chord progression, therefore increasing the tem-
poral granularity of the harmonic specifications.

Figure 6: Selection of scale degree specifications learned
from a blues songs dataset. These specifications conform
with the general consent that blues songs include the main
key’s major scale with the “flat seven” (scale degree 10)
and the blue note (scale degree 3). Note that sharp fourths
(scale degree 6) are used as approach tones to scale degrees
5 and 6.

• Interval Classification: Expanding on [9], we re-
place the hand-designed tone classification spec-
ifications, here called interval classification, with
mined specifications. These specifications provide
information about the size (diatonic or leap) and
quality (consonant or dissonant) of the music in-
terval that precedes each tone. Figure 7 illustrates
mined specifications. Although scale degree and in-
terval classification specifications ensure desirable
harmonic guarantees given key and chord progres-
sion, they provide no melodic contour guarantees.

• Melodic Interval: This feature operates on the first
difference of pitch values and is associated with the
contour of a melody. Combined with scale degree
and interval classification, it provides harmonic and
melodic constraints, including melodic contour.

Figure 7: Interval class specifications learned from a blues
songs dataset. The symbols A, B, C, and D, describe tones
reached by consonant step, consonant leap, dissonant (non-
chord tones) step, and dissonant leap respectively. Con-
sonant and dissonant notes preceded by rests, R, are de-
scribed with the symbols I and O respectively.

• Chord Degree: The chord degree is the identifica-
tion of a note regarding its distance in semitones to
the root of a chord. It adds harmonic specificity to
the interval class.

Table 1 provides the reader with a selection of features
extracted from a blues song with chord and phrase number
annotations. The next section analyzes in detail the appli-
cation of pattern graphs and specifications in song summa-
rization, song and style validation, and machine improvi-
sation with formal specifications.

5. EXPERIMENTAL RESULTS

For the experiments in this paper, we learned pattern
graphs and pattern sequences from three non-overlapping
datasets, namely:

Dtrain a dataset of 20 blues songs with chord and phrase
annotations, transcoded from the Real Book of Blues
[18];

Dtest a dataset of 10 blues songs with chord and phrase
annotations, transcoded from the Country Blues
songbook [16];

SAC a dataset, with 10 genres and 25 pieces of music per
genre [19].

pretty midi [22] is used for handling midi data.

5.1 Style and Song Summarization

Pattern graph plots can be used to understand and visual-
ize the patterns of a song or musical style. In section 4 we
provided pattern graph visualizations that described sig-
nificant musical properties of Dtrain. Pattern sequence
plots, on the other hand, offer a visualization that is di-
rectly related to a song’s formal structure. A pattern se-
quence plot is a color sequence visualization of a pattern
sequence extracted from a song; for example, the chroma
pattern sequence (100010010000, T, 000000000000, F,
100000000000), describes: play any inversion of the C
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chord dur measure phrase . . . pitch mel interval beat interval class
0 F7 14/3 1 1 . . . 69 R 1 I
1 F7 1/3 2 1 . . . 65 -4 5/3 B
2 F7 2/3 2 1 . . . 67 2 1 C
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
23 B-7 1 10 3 . . . 67 -1 1 C
24 F7 4 11 3 . . . 65 -2 1 A
25 F7 -4 12 3 . . . R R 1 R

Table 1: Dataframe from Blues Stay Away From Me by Wayne Raney et al. R represents a rest.

major triad two or more times, followed by one rest fol-
lowed by the note C played one time. The conversion of
a feature into color is achieved by mapping each feature
dimension to RGB. Features with more than three dimen-
sions undergo dimensionality reduction to a 3 dimensional
space through non-negative matrix factorization (NMF) 4 .
Figure 8 shows a plot of binary chroma and dimensionality
reduced binary chroma overlaid with the patterns associ-
ated with each time step.

5.2 Song and Style Validation

Song and style validation describe to what extent a song or
a style violates a specification. A violation occurs when a
pattern does not satisfy a specification, i.e. the pattern does
not exist in the pattern graph. Figure 9 provides histograms
of violations obtained by validating Dtest on chord degree
and interval specifications learned from Dtrain.

Given a total of 355 patterns learned from Dtest, there
were 35 chord degree violations and 35 melodic interval
violations, producing an average violation ratio of ≈ 0.02
per song 5 . The dataset used for learning the specifications
is small. A larger dataset will enable us to better investigate
how they are not characteristic of the blues.

For the task of style validation, we build binary chroma
specifications for each genre in the SAC dataset. The spec-
ifications are used separately to validate all genres in the
SAC dataset. Validation is performed with the average
validation ratio, which is computed as the ratio of viola-
tions given number of patterns in the song being validated.
Figure 10 provides the respective violation ratio matrix. 6

These validations can be exploited in style recognition and
we foresee that more complex validations are possible by
using probabilistic metrics and describing pattern graph
nodes as GMMs.

5.3 Machine Improvisation with formal specifications

Machine improvisation with formal specifications is based
on the framework of Control Improvisation. Musically
speaking, it describes a framework in which a controller
regulates the events generated by an improviser such that
all events generated by the improviser satisfy hard (non-
probabilistic) and soft (probabilistic) specifications.

4 We use scikit-learn’s NMF with default parameters
5 (35 + 35)/(355 ∗ 10)
6 Note that this is not a confusion matrix and must not be symmetric.

Using a 12-bar blues excerpt and its chord progression
shown in Figure 12, we navigated the factor oracle [4]
with 75% replication probability to generate improvisa-
tions with specifications generated from Dtrain. In this
task we used duration, beat onset location, chord degree,
interval class and melodic interval joint specifications.

We computed the average melodic similarity between
Dtrain and other sets of improvisation, including: 50 fac-
tor oracle improvisations generated without specifications,
50 factor oracle improvisations generated with specifica-
tions. The melodic similarity is computed using the al-
gorithm described in [23]. As baselines, we also computed
the similarity of Dtrain to the 12 Bar Blues reference word
and to 50 random improvisations. The results in Figure 11
show that the specifications are successful in controlling
the events generated by the improviser, factor oracle, such
that they are more similar to Dtrain and satisfy the speci-
fications learned from it.

Qualitatively, the improvisation without specifications
violates several specifications related to expected harmonic
and melodic behavior, as Figure 12 confirms. For example,
measure 4 in the improvisation without specifications has
chord degrees that violate harmonic specifications. This is
possible because the events generated by the unsupervised
improvisation disregard harmonic context, thus commonly
producing unprepared and uncommon dissonant notes.

The improvisations with specifications are able to keep
overall harmonic coherence despite the use of chromati-
cism. Their melodic contour is rather smooth and the im-
provisations include several occurrences of the ’Til and
Surrounding patterns, as measures 5 and 1 respectively
show.

6. CONCLUSIONS AND FUTURE WORK

This paper investigated the use of pattern graphs and spec-
ification mining for song and style summarization, vali-
dation, and machine improvisation with formal specifica-
tions. Our experimental results show that pattern graphs
can be successfully used to graphically and algorithmically
describe and compare characteristics of a music collection,
and in guiding improvisations.

We are currently investigating smoothing strategies, in-
cluding the use of a larger dataset, for pattern graph learn-
ing so that we can more robustly use probabilistic metrics
for song and style validation.
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Figure 8: Down by the band 311 as found in SAC’s dataset. The top plot shows the raw feature (binary chroma). The
bottom plot shows the dimensionality reduced chroma (NMF with 3 components) with the components scaled and mapped
to RGB. The patterns associated with each event are plotted as grayscale bars. The absence of a grayscale bar represents
the Followed pattern.

Figure 9: Histogram of melodic interval and chord degree
violations. The y-axis represents the patterns that do not
exist in the specification and the x-axis represents their fre-
quency. F and T represent the patterns Followed and ’Till
respectively.

Figure 10: This violation ratio matrix shows that similar
styles have lower violations ratios. Unexpectedly, Rap -
Pop Rap specifications are more violated by Rock - Alter-
native than by Classical - Baroque or Classical - Romantic.

Although for this paper we hard-coded the pattern min-
ing algorithm to avoid regular expression’s long run time,
we are researching sequential pattern mining algorithms
that are fast and easy and flexible to use as re.

Last and most important, we are expanding specifica-
tion mining to real-valued multidimensional features by
expressing pattern graphs nodes as gaussian mixtures.

Figure 11: Normalized Melodic Similarity w.r.t Dtrain.
Wref is the 12-bar blues phrase used as improvisation in-
put. NO SPECS and SPECS are improvisations generated
with the factor oracle with 0.75 replication probability with
and without specifications. The results show that specifi-
cations induce improvisations from that factor oracle that
are closer to Dtrain.

(a) Reference 12-bar blues phrase

(b) Improvisation without specifications

(c) Improvisation with specifications

Figure 12: Factor Oracle improvisations with 0.75 replica-
tion probability on a traditional instrumental blues phrase.
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